CEC2022#
- class ioh.iohcpp.problem.CEC2022#
Bases:
RealSingleObjective
Functions from the CEC2022 2022 conference.
Attributes Summary
The bounds of the problem.
The constraints of the problem.
The data is that being sent to the logger.
The static meta-data of the problem containing, e.g., problem id, instance id, and problem's dimensionality
The optimum and its objective value for a problem instance
The current state of the optimization process containing, e.g., the current solution and the number of function evaluated consumed so far
Methods Summary
Evaluate the problem.
add a constraint
Attach a logger to the problem to allow performance tracking.
create
(*args, **kwargs)Overloaded function.
Remove the specified logger from the problem.
Enforced the bounds (box-constraints) as constraint :param weight: :type weight: The weight for computing the penalty (can be infinity to have strict box-constraints) :param how: :type how: The enforcement strategy, should be one of the 'ioh.ConstraintEnforcement' options :param exponent: :type exponent: The exponent for scaling the contraint
remove a constraint
Reset all state variables of the problem.
update the problem id
update the problem instance
update the problem name
Attributes Documentation
- bounds#
The bounds of the problem.
- constraints#
The constraints of the problem.
- log_info#
The data is that being sent to the logger.
- meta_data#
The static meta-data of the problem containing, e.g., problem id, instance id, and problem’s dimensionality
- optimum#
The optimum and its objective value for a problem instance
- problems#
- state#
The current state of the optimization process containing, e.g., the current solution and the number of function evaluated consumed so far
Methods Documentation
- __call__()#
Evaluate the problem.
- Parameters:
x (list) – the search point to evaluate. It must be a 1-dimensional array/list whose length matches search space’s dimensionality
- Returns:
The evaluated search point
- Return type:
float
Evaluate the problem.
- Parameters:
x (list[list]) – the search points to evaluate. It must be a 2-dimensional array/list whose length matches search space’s dimensionality
- Returns:
The evaluated search points
- Return type:
list[float]
- add_constraint()#
add a constraint
- attach_logger()#
Attach a logger to the problem to allow performance tracking.
- Parameters:
logger (Logger) – A logger-object from the IOHexperimenter logger module.
- static create(*args, **kwargs)#
Overloaded function.
create(problem_name: str, instance_id: int, dimension: int) -> ioh.iohcpp.problem.CEC2022
Create a problem instance
- problem_name: str
a string indicating the problem name.
- instance_id: int
an integer identifier of the problem instance
- dimension: int
the dimensionality of the search space
create(problem_id: int, instance_id: int, dimension: int) -> ioh.iohcpp.problem.CEC2022
Create a problem instance
- problem_id: int
a number indicating the problem numeric identifier.
- instance_id: int
an integer identifier of the problem instance
- dimension: int
the dimensionality of the search space
- detach_logger()#
Remove the specified logger from the problem.
- enforce_bounds()#
Enforced the bounds (box-constraints) as constraint :param weight: :type weight: The weight for computing the penalty (can be infinity to have strict box-constraints) :param how: :type how: The enforcement strategy, should be one of the ‘ioh.ConstraintEnforcement’ options :param exponent: :type exponent: The exponent for scaling the contraint
- remove_constraint()#
remove a constraint
- reset()#
Reset all state variables of the problem.
- set_id()#
update the problem id
- set_instance()#
update the problem instance
- set_name()#
update the problem name